วันอาทิตย์ที่ 29 กันยายน พ.ศ. 2556

การให้เหตุผล

การให้เหตุผล

การให้เหตุผลทางคณิตศาสตร์ที่สำคัญมีอยู่ 2 วิธี คือ
         1. การให้เหตุผลแบบอุปนัย (Inductive Reasoning) เป็นการสรุปผลในการค้นหาความจริงจากการสังเกต  หรือการทดลองหลายครั้งจากกรณีย่อยๆ แล้วนำมาสรุปเป็นความรู้แบบทั่วไป ซึ่งข้อสรุปที่ไม่จำเป็นต้องถูกต้องทุกครั้ง
         2. การให้เหตุผลแบบนิรนัย (Deductive Reasoning ) เป็นการนำสิ่งที่ยอมรับว่าเป็นจริงมาประกอบเพื่อนำไปสู่ข้อสรุปจากสิ่งที่ยอมรับแล้ว
         - การสรุปที่สมเหตุสมผล (Valid) คือ ข้ออ้างหรือเหตุที่เป็นจริงเป็นผลให้ได้ข้อสรุปที่ถูกต้อง
         - การสรุปผลที่ไม่สมเหตุสมผล (Invalid) คือ ข้ออ้างหรือเหตุเป็นจริง แต่ไม่เป็นผลให้ไดข้อสรุปที่ถูกต้อง
          การตรวจสอบความสมเหตุสมผลนั้นสมารถตรวจสอบได้หลายวิธี  แต่วิธีการหนึ่งที่นิยม คือ การวาดแผนภาพของเวนน์ – ออยเลอร์  เป็นการวาดแผนภาพตามสวมมิติฐานที่เป็นไปได้  แล้วจึงพิจารณาว่าแผนภาพแต่ละกรณีแสดงผลการสรุปตามที่สรุปไว้หรือไม่

-                   ถ้าแผนภาพที่วาดกรณีที่เป็นไปได้ทุกกรณีแสดงผลตามที่กำหนดจึงกล่าวได้ว่า การสรุปผลนั้นสมเหตุสมผล
-                   ถ้าแผนภาพที่วาดกรณีที่เป็นไปได้ทุกกรณีไม่แสดงผลตามที่สรุปไว้ จึงกล่าวได้ว่า การสรุปผลนั้นไม่สมเหตุสมผล

ข้อความที่ใช้ในการอ้างเหตุผลมี 6 แบบ คือ
1. สมาชิกของเซต A ทุกตัว  เป็นสมาชิกของเซต B  
2.ไม่มีสมาชิกของเซต A ตัวใด เป็นสมาชิกของเป็นสมาชิกของเซต B
3. มีสมาชิกของเซต A บางตัว เป็นสมาชิกของเซต A
4.สมาชิกของเซต A บางตังไม่เป็นสมาชิกของเซต B
5. มีสมาชิกของเซต A หนึ่งตัวที่เป็นสมาชิกของเซต B
6. มีสมาชิกของเซต A หนึ่งตัวไม่เป็นสมาชิกของเซต B





รายละเอียด: เป็นเนื้อหาที่แสดงเป็นการสอนในห้องเรียน เรื่องการให้เหตุผลทั้งสองรูปแบบ รวมไปถึงลักษณะข้อความที่ใช้ในการอ้างเหตุผล

                                                 

วันศุกร์ที่ 27 กันยายน พ.ศ. 2556

จำนวนจริงและการแยกตัวประกอบ

จำนวนจริง
จำนวนจริง
เซตของจำนวนจริงประกอบด้วยสับเซตที่สำคัญ  ได้แก่
เซตของจำนวนนับ/ เซตของจำนวนเต็มบวก เขียนแทนด้วย  I
I = {1, 2, 3…}

เซตของจำนวนเต็มลบ  เขียนแทนด้วย  I
I = {-1, -2, -3,…}

เซตของจำนวนเต็ม เขียนแทนด้วย I
I = { …, -3, -2, -1, 0, 1, 2, 3,…}

เซตของจำนวนตรรกยะ : เซตของจำนวนจริงที่สามารถเขียนได้ในรูปเศษส่วน      โดยที่ a,b เป็นจำนวนเต็ม  และ b = 0

NOTE
จำนวนต่อไปนี้เป็น จำนวนตรรกยะ
1.            จำนวนเต็ม ได้แก่ 0,1,-1,2,-2,3,-3,...
2.            จำนวนที่เขียนในรูปเศษส่วนของจำนวนเต็มและตัวส่วนไม่เป็นศูนย์  เช่น
3.            จำนวนที่เขียนในรูปทศนิยมซ้ำ เช่น 1.414 , -0.17 , 1.508

เซตของจำนวนอตรรกยะ : จำนวนที่ไม่ใช่จำนวนตรรยะ ซึ่งไม่สมารถเขียนในรูปเศษส่วนของจำนวนเต็มที่ตัวส่วนไม่เป็นศูนย์ แต่สามารถเขียนได้ในรูปทศนิยมไม่ซ้ำ และสามารถกำหนดค่าโดยประมาณได้
         ตัวอย่างจำนวนอตรรกยะ
                   = 1.4142135…   มีค่าประมาณ    1.414
                   = 1.4422495…   มีค่าประมาณ    1.442
                   = -0.8660254…  มีค่าประมาณ    -0.866
                   = 3.14159265…  มีค่าประมาณ    3.1416
NOTE
   ยูเนียรของเซตของจำนวนตรรกยะและเซตของจำนวนอตรรกยะเรียกว่า  “ เซตของจำนวนจริง” เขียนแทนด้วยสัญลักษณ์  R
   จำนวนอีกประเภทหนึ่งที่ได้จากการแก้สมการ x = -1 ซึ่งบอกไม่ได้ว่ามากกว่าศูนย์หรือน้อยกว่าศูนย์  จำนวนพวกนี้ไม่ใช่จำนวนจริง
   ยูเนียรของเซตของจำนวและเซตจำนวนจริงชนิดใหม่เรียกว่า “เซตจำนวนเชิงซ้อน









สมบัติของจำนวนจริงเกี่ยวกับการบวกและการคูณ
    1) สมบัติของการเท่ากันในระบบจำนวนจริง
         เมื่อ a, b , c เป็นจำนวนจริงใดๆ
(1)      สมบัติการสะท้อน a = a
(2)      สมบัติการสมมตรา ถ้า a = a แล้ว b = c
(3)      สมบัติการถ่ายทอด ถ้า a = a และb = c แล้ว a = c
(4)      สมบัติการบวกด้วยจำนวนที่เท่ากัน
ถ้า a = b แล้ว a+c = b+ c
               (5) สมบัติการคูณด้วยจำนวนที่เท่ากัน
               ถ้า  a =  b แล้ว ac = bc
2) สมบัติการบวกและการคูณจำนวนจริง
            ถ้า a, b, c เป็นจำนวนจริงใดๆ

สมบัติ
การบวก
การคูณ
ปิด
 a+b €   R
ab  €   R
การสลับที่
a+ b = b+a
ab = ba
การเปลี่ยนหมู่
(a+b)+c = a+(b+c)
(ab)= a(bc)
การมีเอกลักษณ์
มีจำวนจริง 0 ซึ่ง0+a = a= a+0
มีจำนวนจ1 a = a= a  1 ริงซึ่ง 1 ซึ่ง

เรียก 0ว่าเอกลักษณ์
เรียก 1 ว่าเอกลักษณ์
การมีอินเวอร์ส
สำหรับจำนวนจริง aจะมีจำนวนจริง –a  โดยที่ (-a)+a = 0 = a+(-a) เรียก –a ว่าอินเวอร์ส การบวกจำนวนจริงของ a
เรียก 1 ว่าเอกลักษณ์การคูณสำหรับจำนวนจริง a ที่ a   0
จะมีจำนวนจริง a  โดยที่ a
a = 1 = a   a  เรียก a  ว่าอินเวอร์สการคูณของจำนวนจริงa    
การแจกแจง
A(a+b) = ab+ac





การแยกตัวประกอบของพหุนาม
         พหุนามดีกรีสองตัวแปรเดียว : พหุนามที่เขียนได้ในรูป ax + bx +c = 0 เมื่อค่าคงตัวที่ a  0 และ x เป็นตัวแปร
การแยกตัวประกอบของ x +bx +c = 0 เมื่อ b , c เป็นค่าคงตัวที่ c = 0
ทำได้โดยการาจำนวน d และ e ที่ de = c และ d+c = b ทำให้ x +bx + c = (x+d)(x+c)

เช่น  จงแยกตัวประกอบของ x +7x + 12
         จัดพหุนามให้อยู่ในรูป x +(d+e)x+de
         นั้นคือ หาจำนวนสองจำนวนที่คูณกันได้ 10 และบวกกันได้ 7
         ซึ่งก็คือ 5 และ 2
         จะได้ (5)(2) = 10 และ5+2 = 7
         ดั้งนั้น x+7x+10= (x+5) (x+2)

NOTE
ในกรณ๊ทั่วไป x – a = (x-a)(x+a) เมื่อ a เป็นค่าคงตัวที่ a  0

การแยกตัวประกอบของพหุนามในรูป ax +bx +c เมื่อ a, b , c , เป็นค่าคงตัว และ  a 0 ,c  0
เช่น 4x-4x+1 ทำได้ดังนี้
1) หาพหุนามดีกรีหนึ่งพหุนามที่คูณกันได้ 4มี(2x)(2x)หรือ (4x)(x) เขียนสองพหุนามที่ได้ให้เป็นพจน์หน้าของผลคูณของพหุนามใหม่ดังนี้
                   (2x   )(2x  )หรือ(4x  )(x   )
2.)หาจำนวน 2 จำนวนที่คูณกันได้ 1 ซึ่งได้แก่ (1)(1) หรือ (-1)(-1) เขียนจำนวนทั้งสองเป็นพจน์หลังของพหุนามในข้อ 1) ดังนี้
                   (2x+1)(2x+1) หรือ (4x+1)(x+1)
                   (2x-1)(2x-1)            (4x-1)(x-1)
3)หาพจน์กลางของพหุนามจากผลคูณของพหุนามแต่ละคู่ในข้อ 2 ) ที่มีผลบวกเท่ากับ -4x จะได้     
จากผลคูณ  ( 2x -1  )( 2x-1) ได้พจน์กลางเท่ากับ -4x
ดังนั้น พหุนาม 4x -4x-1 = (2x-1)(2x-1)=(2x-1)

การแยกตัวประกอบของพหุนามที่เป็นกำลังสองสมบูรณ์
         กำลังสองสมบูรณ์ : พหุนามดีกรีสองสมบูรณ์ที่แยกตัวประกอบแล้วได้ตัวประกอบเป็นพหุนามดีกรีหนึ่งซ้ำกัน เช่น
         x+2ax+4 = (x+2)(x+2) = (x+2)
         x-4x+4 = (x-2)(x-2) = (x-2)
         ในกรณีทั่วไปพหุนามดีกรีกำลังสองสมบูรณ์ แยกตัวประกอบได้ดังนี้
          x-2ax+a = (x-a)
         x+6x+9 = (x+3)
         x-2ax+a = (x-2)
         x-8x+16 = (x-4)
การแยกตัวประกอบโดยการทำให้เป็นกำลังสองสมบูรณ์
         พหุนาม x+bx+c เช่น x+2x-5 ทำให้เป็นกำลังสองสมบรูณ์ดังนี้
          X+2x-5     =    ( x+2x)-5
                            =   (x+2x+1)-5-1
                            =   (x+1) -6
ดั้งนั้น   x+2x-5   = (x+1)-6
จาก     x-a           = (x-a)(x+a)
จะได้ (x+1)-6     = ((x+1)-  6  )((x+1)+  6  )

การแก้สมการกำลังสองสมบูรณ์
         การแก้สมการหรือการหาคำตอบของสมการสองตัวแปรเดียว  การหาคำตอบของสมการที่เขียนอยู่ในรูป ax+bx+c = 0 เมื่อ a  b c เป็นค่าคงตัว และ a = 0ทำได้โดยอาศัยความรู้เกี่ยวกับจำนวนจริง ดังนี้
ถ้า a และ b เป็นจำนวนจริง และab = 0 แล้ว a = 0”
การหาคำตอบของสมการ : การหาจำนวนที่นำไปแทน x ในสมการแล้วได้สมการที่เป็นจริง

-การแก้สมการกำลังสองโดยวิธีการแยกตัวประกอบ
เช่น แยกตัวประกอบของ x-4x+3 = 0
วิธีทำ   แยกตัวประกอบของ x-4x+3
            จะได้ (x-3)(x-1)
            หาคำตอบของสมการ (x-3)(x-1) = 0
            โดยหา x ที่ทำให้ x-3 = 0 หรือ x-1= 0
             นั่นคือ                x= 0 หรือ x= 1
ตรวจคำตอบ     โดยแทนค่า x ในการ x-4x+3 = 0 ด้วย 1หรือ 3
เมื่อแทนค่า x  ด้วย 1 จะได้
                   (1)-4 (1)+3 = 0                ซึ่งเป็นจริง
เมื่อแทนค่า x ด้วย 3 จะได้
                   (3)-4(3)+3 = 0                  ซึ่งเป็นจริง
ดังนั้น 1 และ3 เป็นคำตอบของสมการ x -4x+3 =0


- การแก้สมการกำลังสองโดยใช้สูตร


 เมื่อ a = 0 และ b -4ac 0



NOTE
สมการกำลังสอง ax +bx+c = 0 เมื่อ a b c เป็นค่าคงตัว และ a = 0
มีคำตอบที่เป็นจำนวนจริง 2 คำตอบ  เมื่อ b -4ac  0
มีคำตอบที่เป็นจำนวน 1 คำตอบ        เมื่อ b -4ac = 0
ไม่มีคำตอบที่เป็นจำนวนจริง             เมื่อ b -4ac    0














รายละเอียด: เป็นเนื้อหาเรื่องสมบัติของจำนวนเต็มทั้ง 11 ข้อ






รายละเอียด: เป็นเนื้อหาที่แสดงเป็นวิธีการแยกตัวประกอบ


ที่มา: https://sites.google.com/site/khnitsastrm4/bth-thi-4-canwncring  15 ก.ย. 2556